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Abstract

Automatic language assessment and learning systems are becoming more popular to support the
increasing demand in English language learning. One essential aspect of the automatic systems
is to provide reliable and meaningful feedback to learners on grammatical errors they make. The
learners can use the feedback to improve their language proficiency. The automatic systems
can also provide more quality control to assessment processes. Working with spoken language
provides further challenges due to its nature. Therefore, this work focuses on developing
grammatical error detection and correction systems for spoken language.

To provide feedback, the problem of detecting grammatical errors in non-native spoken
English is considered as a first step. The current state-of-the-art grammatical error detection
(GED) systems are designed for written texts; as a result, they do not yield desirable performance
on spoken language data. In this work, we are interested in adapting these systems to spoken
language data. Firstly, we illustrate how a state-of-the-art GED system performs on both written
and spoken data. Then, we provide a method of improving its performance by doing a system
combination, and we compare this method to transfer learning. Also, this work aims to provide
baseline GED results on a spoken language test set as a reference for future work.

The next step towards automatic systems is grammatical error correction (GEC) in non-native
spoken English. We approach this problem by two methods: language model (LM) based
approach, and neural machine translation (NMT) based approach. The first approach, LM-based,
is motivated by the fact that it does not rely on annotated data, which is generally labourious to
obtain. This approach involves generating a confusion set using the Automatically Generated
Inflection Database (AGID) as well as pre-defined sets, and expanding the confusion set into
a lattice for rescoring by a language model. Firstly, without using annotated data, we train an
RNN language model on the one-billion corpus and achieve the F0.5 score of 26.5 and 18.4
on the CoNLL and BULATS data sets respectively. Then, we make use of a GED system in
confusion set generation by deriving candidates only for words predicted as incorrect, giving
an improvement of around 3.2 in F0.5. Next, we compare three variants of language models:
n-gram, recurrent neural network (RNN), and succeeding word RNN (suRNN). It is found that
the suRNNLM performs the best on both written on spoken test sets, outperforming the RNNLM
by 1.0 and 0.4 in F0.5 on CoNLL and BULATS respectively. Since applying GED shows a good
improvement, we investigate the maximum gain we could achieve by an idealised GED system.
Given known labels, this idea is experimented, and the gain in F0.5 is found to be around 10
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and 15 on CoNLL and BULATS respectively. As the correction candidates are derived from the
AGID, the database limits the errors the system can correct, and it is found that the coverage on
CoNLL is about 51.2% and that on BULATS is about 56.7%. Lastly, by tuning the bias of the
original words in a lattice, the gain in F0.5 on CoNLL is around 1.0, but there is almost no gain
when evaluated on BULATS.

The second approach to GEC is neural machine translation (NMT). It is motivated by the
recent success in deep learning on several machine translation and natural language processing
tasks. Our NMT system is based on the bi-directional LSTM encoder-decoder architecture.
When trained on sentences in the CLC and their corrected pairs, the NMT system achieves the
F0.5 score of 32.6 on CoNLL and 33.9 on BULATS, outperforming the LM-based with GED
system on both evaluation sets. Moreover, when annotated data in the target domain are available,
the NMT system can be fine-tuned, and it is shown that this technique gives a gain of 4.8 on
CoNLL and a gain of 7.2 on BULATS. In summary, the findings recommend a practical guide
towards building a GEC system as follows: (1) when there are no annotated data, an LM-based
system using an suRNNLM can achieve the highest performance, (2) if error tagged data are
available, a GED system can be trained and used in confusion set generation to improve the
overall performance of the LM-based GEC system, (3) if error corrected sentence pairs are
available, an end-to-end NMT system achieves a higher performance level than the LM-based
system, (4) if the target domain data are annotated for GEC, the NMT system can be fine-tuned
to achieve the best performance level.

In addition, language models can be used to discriminate between more natural sentences and
less natural sentences. We refer to the score of language model as the fluency score, which can
be used for selecting the results of data augmentation, GEC system combination, or NMT-based
GEC output re-ordering. It is shown that the quantity of training data is more important than
the type of language model to obtain a good fluency score. The language model trained on
the one-billion corpus gives the best result in our experiment. When used for the GEC system
combination, we achieve a higher F0.5 score compared to a single system.

Data augmentation is investigated as there are abundant speech data that are not annotated
for grammatical errors. Our error generation models are based on n-gram and NMT. We show
that augmented data from any model improve the GED performance. When comparing the
models, the results suggest that the bigram and NMT with sampling decoding models are more
suitable than the other models investigated. Moreover, augmenting data that are closer to the
target corpus gives a better GED result.
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Chapter 1

Introduction

1.1 Motivation

According to the British Council’s research, over one billion people are learning English around
the world, and millions of these take assessments to demonstrate their proficiency. Because
of the high and rising demand, there is a growing shortage of qualified teachers and assessors
in many countries. In the age of increasing availability of computers and online platforms,
the development of speech processing and machine learning techniques for computer-assisted
language learning (CALL) systems and automatic assessment systems could help learners
improve their English more effectively, as well as automating the expensive and time-consuming
assessment process.

One crucial aspect of these systems is to provide reliable and meaningful feedback to learners
on errors they make. Language learners can use the feedback independently, or under the
supervision of a teacher, to improve their proficiency. Another important aspect of these systems
is that they could provide additional layers of quality control and speed up assessment processes.
For computers, working with spoken language is even more difficult than written language as
systems have to handle spontaneous speech from non-native speakers of different accents before
they can assess and give feedback. One important aspect of assessment and feedback is English
learners’ choice of grammar which is challenging due to the nature of spoken language that when
we speak, we hesitate, make repetitions, do not make complete sentences, make use of gesture
and intonation. The performance of assessment and feedback systems also depends on automatic
speech recognition (ASR) systems.

This project aims to investigate the extent to which machine learning and deep learning
techniques can be applied to develop automatic systems, which consist of grammatical error
detection and correction systems in order to assess proficiency and provide feedback.

1



CHAPTER 1. INTRODUCTION 2

1.2 Spoken Language vs Written Language

Working with spoken language data such as manual transcriptions of speech, or the outputs of
ASR systems further complicates this task. Firstly, spoken language consists of pronunciation,
prosody, and delivery in addition to text; as a result, messages are also delivered by body
languages making sentences in spoken language less complete compared to written text. Secondly,
when we speak we may not speak in full sentences, we make repetitions, we hesitate, for
example. Thirdly, it is argued that there is no defined set of spoken grammar. Nevertheless,
there are advantages of speech compared to written text. For instance, there are no spelling or
pronunciation mistakes, and there is additional information in the audio signal such as confidence
score which describes how likely that a word is correctly transcribed. The following example
demonstrates the difference between speech and written text as well as grammatical errors:

• Speech (Manual transcription or ASR output):
hi peter um do you want to play tennis uh in evening yeah i um i want to play but i have to
finishing the work you know can we do tomorrow

• Meta-Data Extraction:
Speaker1: / hi peter / um do you want to play tennis uh in evening /
Speaker2: / yeah i um i want to play / but i have to finishing the work you know / can we
do tomorrow /

• Written Text:
Speaker1: Hi Peter, do you want to play tennis in evening?
Speaker2: I want to play, but I have to finishing the work. Can we do tomorrow?

• Grammatical Errors:
Speaker1: Hi Peter, do you want to play tennis in [the] evening?
Speaker2: I want to play, but I have to [finishing→ finish] the work. Can we do tomorrow?

1.3 Outline of the report

The report consists of 7 chapters. Chapter 2 provides background knowledge on deep learning
techniques used in this project. Chapter 3 describes data sets and pre-processing steps on the data.
Chapter 4 describes the work on Grammatical Error Detection (GED). Chapter 5 describes the
work on Grammatical Error Correction (GEC) including two approaches investigated: language
model based approach and neural machine translation based approach. Chapter 6 examines
the use of language models for further improvements of GEC systems by system combination
and NMT re-ordering. Chapter 7 describes the methods for data augmentation, and the use of
augmented data to train GED systems. Lastly, Chapter 8 concludes the main findings of this
project and discusses future work.



Chapter 2

Deep Learning

2.1 Overview

Deep learning is a machine learning method that uses multiple layers of artificial neurons to
progressively extract higher level features from raw input such as text. In recent years, deep
learning architectures such as deep neural networks (DNN) and recurrent neural networks (RNN)
have shown success in many areas such as speech processing, language modelling, and natural
processing. This project applies deep learning to two types of machine learning tasks:

• Sequence Labelling - This task involves assigning a categorical label to each member of a
sequence of observed values. Grammatical Error Detection (GED) is a sequence labelling
task where each word in a sentence is assigned to one of the two classes: grammatically
correct (c) or grammatically incorrect (i).

• Sequence to Sequence - This task involves generating an output sequence from an input
sequence, and these two sequences may have different lengths. For instance, the machine
translation problem is to translate a sentence from one language to another. Grammatical
Error Correction (GEC) can be treated as a sequence to sequence problem where the input
sentence is the erroneous sentence, and the output is a corrected sentence.

For both sequence labelling and sequence-to-sequence tasks, recurrent neural networks can be
applied since they can incorporate the information from the entire input sequence in order to
make a prediction. This chapter aims to provide background knowledge about deep learning
techniques used in this project as follows:

• Feedforward Neural Networks (FFNNs): The simplest build block for deep learning.

• Recurrent Neural Networks (RNNs): The building block for our systems.

• Attention Mechanism: A crucial element for sequence-to-sequence models

• Transfer Learning: A method for reusing a trained model on a new problem.

3



CHAPTER 2. DEEP LEARNING 4

2.2 Feedforward Neural Networks

Feedforward neural networks (FFNNs) are the first and simplest type of neural networks. The
connections between the nodes do not form a cycle as opposed to recurrent neural networks.
The network could be single-layer perceptron which consists of a single layer of output nodes,
or multi-layer perceptron having multiple layers of computational units. In this work, a fully-

connected connection is used between layers meaning that every input node is connected to every
node in the next layer. For each layer, the network computes the output y given the input x by:

y = σ(Wx+b) (2.1)

where σ is a non-linear activation function such as tanh, ReLU, sigmoid, or softmax. Note
that softmax is usually used at the final layer as it takes a vector K real numbers as input, and
normalises it into a probability distribution:

softmax(z)i =
exp(zi)

∑
K
j=1 exp(z j)

(2.2)

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) have internal or hidden state (memory) for processing
sequences of inputs. At time step t, a recurrent unit computes the hidden state ht as a function
of the current input xt and its previous hidden state ht−1, and the output at this time step is
computed as a function of the hidden state:

ht = σh(Whxt +Uhht−1 +bh) (2.3)

yt = σy(Wyht +by) (2.4)

where σh and σy are non-linear activation functions, and Wh, Uh, bh, Wy, and by are the model
parameters (weights) to be trained. An unrolled recurrent unit can be view as a deep fully
connected neural network except that the weights are shared. Training the RNN is done by
backpropagation through time (BPTT) [1] rather than the standard error backpropagation for
feed-forward neural networks. Multiple recurrent units can be stacked together to form a deep
RNN architecture.
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Fig. 2.1 An unrolled RNN unit

2.3.1 Bi-directional RNNs

Two recurrent units can be used to incorporate both past and future information. Each unit has
its own weights, and the output is a function of both hidden states:

h( f )
t = RNN(xt ,h

( f )
t−1) (2.5)

h(b)
t = RNN(xt ,h

(b)
t+1) (2.6)

yt = σy(W
( f )
y h( f )

t +W(b)
y h(b)

t +by) (2.7)

This network is called bi-directional RNN [2]. When it is used to encode a sequence into a single
representation vector the final hidden state is used for the forward unit, and the first hidden state
is used for the backward unit.

2.3.2 Long Short Term Memory

Long Short Term Memory (LSTM) [3] is an RNN architecture, which is a modification of the
vanilla RNN to handle long term dependencies. The vanilla RNN suffers the gradient vanishing
or exploding problem when performing error back-propagation. LSTM deals with this problem
by using an input gate it , an output gate ot , and a forget gate ft . The operation can be written as:

ft = σg(W f xt +U f ht−1 +b f ) (2.8)

it = σg(Wixt +Uiht−1 +bi) (2.9)

ot = σg(Woxt +Uoht−1 +bo) (2.10)

ct = ft⊙ ct−1 + it⊙σc(Wcxt +Ucht−1 +bc) (2.11)

ht = ot⊙σh(ct) (2.12)

where σg, σc, and σh are point-wise non-linear activation functions.
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Fig. 2.2 LSTM structure

2.4 Attention Mechanism

Attention mechanism is important because it has been shown to produce state-of-the-art results
in machine translation and other natural language processing tasks [4, 5]. When it is applied to
an RNN, it allows the RNN to encode a sequence better by focusing on parts of hidden states
instead of using the final hidden state. Given hidden states of an RNN, h1, h2,..., hT , the attention
mechanism computes the following:

• Score vector:
et = score(k,ht) (2.13)

• Attention weights:

αt =
exp(et)

∑
T
i=1 exp(ei)

(2.14)

• Context vector:

c =
T

∑
t=1

αtht (2.15)

where the score function has two standard forms: dot-product attention et = hT
t Wxkk, and

additive attention et = wT tanh(Wxht +Wkkt). The key k can be chosen as the input vector xs

resulting in est , αst , and cs; this form of attention mechanism is called self-attention mechanism.
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2.5 Transfer learning

Transfer learning is the process of storing knowledge gained from solving one problem and apply
it to another problem which is different but related. Transfer learning is popular in deep learning
due to a large amount of data required to train deep learning models. A common approach
involves:

1. Choose a related predictive modelling task with a large amount of training data and
develop a model for the chosen task. Alternatively, for many common tasks, a model can
be selected from a range of available pre-trained models.

2. Reuse the trained model either entirely or partially on the target task.

3. Fine-tune the model on the input-output pair data available to the target task.

For example, in the field of natural language processing (NLP), pre-trained language represen-
tation models are used on a wide range of NLP tasks, many of which achieve state-of-the-art
results [6–8]. Due to the lack of large speech corpora with grammatical error mark-up, transfer
learning can be used to boost the performance of automatic systems for GED and GEC problems
by training a deep learning model on large written-text data, and re-using it as a pre-trained
model to fine-tune it on the target speech data set.



Chapter 3

Data

This chapter aims to provide an overview of various data sets used in the project. The main
aspects of the data sets for this project are:

• Style: Written or Spoken - This aspect describes the nature of the data, whether they are
written text or transcripts of speech. The transcription could be a manual transcription by
a human or the output of an automatic speech recognition (ASR) system.

• Annotation: Unannotated, Error Tagged, or Corrected - Unannotated data are plain texts
which are, in general, relatively easy and cheap to obtain. Error tagged data are for the
GED task as each word is labelled with either being grammatically correct (c) or incorrect
(i). Corrected data are parallel texts: one is produced by English learners, and the other is
the corrected version.

3.1 Corpora

Corpus Annotation Usage # Words

AMI Unannotated Training 2.0M
Switchboard Unannotated Training 3.1M

MGB Unannotated Training 3.8M
Fisher Unannotated Training 35.0M

BULATS Error Tagged & Corrected Evaluation 61.9K
NICT-JLE Error Tagged & Corrected Evaluation 135.3K

Table 3.1 Summary of the spoken language corpora
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Corpus Style Usage # Words

One-Billion Unannotated Training 730M
CLC Error Tagged & Corrected Training 14.1M

FCE-public Error Tagged & Corrected Training/Evaluation 450K
CoNLL Corrected Evaluation 27.8K

Table 3.2 Summary of the written language corpora

3.1.1 Cambridge Learner Corpus (CLC)

The Cambridge Learner Corpus [9] is a fully annotated corpus of English learners. In total, it
contains over 23 million words of text from examination scripts written by candidates taking
written tests from Cambridge Assessment. It has been manually annotated with grammatical
errors, and the errors have also been corrected. The subset FCE-public, which is publicly
available, consists of 1,244 exam scripts of candidates taking FCE examinations in 2000 and
20001; this publicly available data set is also divided into train, dev, and test sets. In this
project, the CLC for training includes the FCE-public training set, and written tests from IELTS,
BULATS, CPE, and CAE giving approximately 14 million words or 870 thousand sentences
from 27.5 thousand of candidates. In addition, other examinations, including BEC, ICFE, ILEC,
KET, SfL, and PET, are used in Chapter 6.

3.1.2 BULATS

The corpus is the main speech data used as an evaluation set in this project. It is from the
Business Language Testing Service (BULATS) test provided by Cambridge Assessment. The
test consists of read aloud and free-speaking parts. In this project, only the free speaking C, D,
and E sections are used. The data contain 226 candidates. In section C, the candidates are given
a business or work-related topic to talk about for 60 seconds. In section D, charts and/or graphs
are provided, and the candidates are asked to describe them for 60 seconds. In section E, the
candidates are asked to answer five questions related to one scenario. The data set consists of
1438 responses from these sections. Speakers are approximately evenly distributed across CEFR
grade A1-C (C1 and C2 are combined). They come from 6 first languages (L1s): Arabic, Dutch,
French, Polish, Thai, and Vietnamese. Two sets of manual transcription with grammatical error
markup and additional meta-data annotations have been produced [10]. Only one annotation is
used in this project. In addition to manual transcriptions, ASR transcriptions of the BULATS
data were also made based on the graphemic stacked hybrid DNN+LSTM-HMM joint decoding
system described in [11].
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3.1.3 NICT-JLE

The NICE Japanese Learner English (JLE) Corpus (v4.1) [12] consists of manual transcriptions
from a speaking English test ACTFL-ALC SST. A native or proficient speaker of English
conducted an interview with a candidate. The corpus contains 167 interviews which have been
annotated with grammatical errors and disfluencies. All candidates are Japanese L1 speakers.
Only the candidate parts are used in this project. The distribution of scores is equivalent to
A1-B2 on the CEFR scale.

3.1.4 CoNLL

This is the official test data from the CoNLL-2014 Shared Task: Grammatical Error Correction
[13]. The test set was collected from 25 students, who are non-native speakers of English, from
the National University of Singapore. They were recruited to write essays in response to prompts.
The data consist of 1.3 thousand sentences that were annotated for grammatical error correction
by two experts, independently giving two sets of annotation. The CoNLL test data are processed
further in this project, including the removal of punctuations and correcting spelling mistakes as
motivated by the nature of speech data. Since the data were made for the GEC task, there are no
grammatical error labels. In this work, the labels are obtained from the locations of correction.

3.1.5 Native Speech Corpora

The corpora in this category comprise: (1) AMI [14] - manual transcriptions of meeting record-
ings, containing about 2.0 million words, (2) Switchboard [15] - manual transcriptions of
telephone speech, containing about 3.1 million words, (3) Multi-Genre Broadcast (MGB) 1 -
manual transcriptions of multi-genre broadcast, containing about 3.8 million words, and (4)
Fisher [16] - manual transcriptions of telephone speech, containing approximately 35 million
words. In this project, the assumption for using these data sets is that native speakers of English
produced the recordings; hence, their choice of grammar is assumed correct.

3.1.6 One-Billion

The one-billion corpus [17] is widely used as a benchmark in language modelling. The data
were collected from resources that are freely available on the internet. This corpus is by far the
largest available to this project with the size about 730 million words after processing. It does
not contain any information or annotation about grammatical errors.

1http://www.mgb-challenge.org/

http://www.mgb-challenge.org/
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3.2 Data Processing

In this work, spelling mistakes and punctuation are removed from all the written text corpora
such as the CLC and CoNLL. The intuition is that our interest is to build systems for speech data,
and there are no spelling mistakes or punctuation in speech. The texts are lowercased such that
they are as close to the ASR output as possible. Furthermore, further processing steps are carried
out for each of the tasks.

• Pre-processing data for GED

– If there is a missing word, the following word is labelled as incorrect. The intuition
is that although this word is correct when considered in isolation, it is incorrect given
the context.

– </s> token is prepended and appended to each sentence to add sentence boundaries.
Note that <s> is not included in the pre-trained Google’s 3 million word word2vec
word embedding, so </s> is used for both sentence start and end.

– In speech corpora, repetitions, hesitations, and partial words are removed.

– Example of a sentence with labels:

sentence: we can inform with customers

label: c c c i c

• Pre-processing data for GEC

– Sentences are tokenised using the Natural Language Toolkit (NLTK) [18]

– Sentence start <s> and sentence end </s> tokens are used.

– Example of a pair of sentences:

incorrect: internet was something amazing for me

correct: the internet was something amazing for me



Chapter 4

Grammatical Error Detection (GED)

This chapter considers the problem of detecting grammatical errors in non-native spoken English
as a first step towards automatic language assessment and learning systems. More specially,
the task is to develop a system that labels each of the words in a given sentence as being
grammatically correct (c) or incorrect (i). We investigate the use of deep learning for building a
GED system. The GED system is initially developed for written texts, and its performance on
a manual transcription of speech is investigated. Furthermore, two methods for improving the
GED system’s performance on spoken language data are presented.

4.1 Model Architecture

A state-of-the-art neural network based grammatical error detection (GED) system is chosen
for this work. It is designed to detect all types of grammatical errors present in texts. This GED
system is the sequence labeller1 having a bi-directional LSTM network architecture, assigns the
probability of each word being grammatically incorrect [19]. The GED system, firstly, splits
an input sentence into a sequence of tokens w1:N = {w1, ...,wN}. Using a word embedding, the
tokens are mapped to vector representations. Each of the word-level vector representations is
concatenated with a character-level vector representing that word obtained by a bi-directional
LSTM layer as described in [20]. These combined vectors, x1:N = {x1, ...,xN}, are passed
to another bi-directional LSTM layer which encodes x1:N into context-specific forward and
backward representations h⃗1:N and ⃗h1:N .

h⃗t = LSTM(xt , h⃗t−1); ⃗ht = LSTM(xt , ⃗ht+1) (4.1)

The forward and backward vectors are then concatenated into a hidden vector dt . Subsequently,
the hidden vector is passed to a feedforward layer with tanh activation function, and the output
probability is obtained from another feedforward layer having two neurons and the softmax

1https://github.com/marekrei/sequence-labeler
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function.
dt = concat(⃗ht , ⃗ht) (4.2)

P(yt |w1:N) = softmax(Wo(tanh(Wddt))) (4.3)

The trainable parameters are the embedding matrix, bi-directional LSTM weights, and feedfor-
ward weights, and the cost function being minimised in training is the cross-entropy between
output probability and the annotated labels.

Fig. 4.1 Model Architecture of the GED system

In this project, the word embedding is 300-dimensional, and the character-level embedding
vector is 50-dimensional (xt is 350-dimensional). Both forward and backward LSTM layers have
200 units (⃗ht and ⃗ht are 200-dimensional; hence, dt is 400-dimensional), and the hidden layer
has 50 units.

4.2 Evaluation Metrics

Evaluation is performed by computing precision (P), recall (R), and F-score:

P =
TP

TP+FP
(4.4)

R =
TP

TP+FN
(4.5)

Fβ = (1+β
2) · P ·R

β 2 ·P+R
(4.6)

where TP (true positive) is the number of tokens correctly labelled as incorrect (i), FP (false
positive) is the number of tokens labelled as incorrect (i) but in fact are correct, and FN (false
negative) is the number of tokens labelled as correct (c), but in fact are incorrect. The main
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evaluation measure for error detection commonly adopted for GED is F0.5 which combines
both precision and recall, while emphasises precision as twice as recall since accurate/reliable
feedback is more important than coverage in the error detection task [21].

4.3 Experiments

4.3.1 GED system on written vs spoken language data

Since the CLC is the largest corpus available with grammatical error labels, it is chosen for
training the GED system, which will be referred to as the baseline system in this experiment.
The baseline system has an F0.5 score of 57.6 as shown in Table 4.1. This performance level is
lower than the results reported in [19, 22] since the spelling and punctuation mistakes, which
account for 23% in the FCE-public test set, have been corrected during pre-processing. Figure
4.2 shows that the precision on BULATS is lower than that of FCE-public at all recall rates. This
is due to the fact that the FCE-public data match the training data (the CLC), but the BULATS
data, which are spoken language, have different word distributions.

Figure 4.2 suggests that even at the low recall region, the system has only 80% precision rate
on BULATS. Since the objective is to build a GED system suitable for speech data, we need to
improve the system to provide meaningful feedback. In [23], such a system is enhanced by a
fine-tuning method giving an F0.5 score of 55.8 evaluated on BULATS. This result is promising,
but the performance is still worse than when it is performed on written data. In Section 4.3.2, it
investigates an alternative method to improve the performance by doing system combination,
and in Chapter 7 data augmentation approach will be examined in detail.

Test Set P R F0.5

FCE-public 69.9 33.9 57.6
BULATS 52.4 27.0 44.1

Table 4.1 Precision, Recall, F0.5 scores of the baseline GED system
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Fig. 4.2 Precision-Recall curves of the baseline GED system evaluated on FCE-public (written)
and BULATS (spoken)

4.3.2 GED system combination

In machine learning, particularly neural network based methods, ensemble averaging is the
process of training multiple models and combining them to produce the desired output rather
than training one model. Empirically, an ensemble of models performs better than any individual
model, because the various errors of models average out. One way of obtaining an ensemble
is to train a set of models with different topologies, or we could train a set of models with the
same topology but different training configurations such as learning rate or random seed. So, an
ensemble of GED models, E = {M1, ...,MJ}, makes a prediction by:

P(yt |w1:N ;E ) =
1
N

J

∑
i=1

P(yt |w1:N ;M(i)) (4.7)

Firstly, we investigate the use of ensemble by varying the randomness, i.e. random seed in
Python’s numpy and TensorFlow packages. Five models are trained on the CLC, and the result is
shown in Figure 4.3. Overall, the ensemble average method has a small gain over a single model;
the F0.5 score increases by 0.68 from the average of the F0.5 scores of the five individual systems.
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Fig. 4.3 Precision-Recall curves of a set of GED models trained on the CLC and evaluated on
FCE-public

Secondly, we instead train a set of models with the same topology and the same training configu-
ration on different data sets. This experiment makes use of the speech data sets such as AMI
and Switchboard by corrupting them using the error statistics from the CLC; note that section 7
will describe how to corrupt native-speech corpora in details. This experiment uses the modified
unigram statistics corruption method to obtain speech training data for GED systems. Once GED
systems have been trained on different corpora, an ensemble of two systems, one trained on the
CLC (text-CLC GED) and the other trained on speech data (speech GED), is investigated. The
intuition is that false positive errors made by the text-CLC system due to the difference in the
nature between written-text and speech will be averaged out by the speech GED system.

Table 4.2 shows that both combined systems, e.g. system 9 and system 10, have higher precision,
recall, and F0.5 than the baseline GED system, and we achieve a gain of 2.1 in F0.5. Additionally,
Figure 4.4 shows that the precision of the combined system is higher than the baseline system at
all operating points.
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System P R F0.5

(1) Text-CLC (baseline) 52.4 27.0 44.1

(2) Speech-AMI 39.1 26.5 35.7
(3) Speech-SWBD 45.0 23.4 38.0
(4) Speech-MGB 49.6 24.3 41.0
(5) Speech-Fisher 46.9 23.8 39.3

(6) Speech-AMI+SWBD 46.8 24.5 39.6
(7) Speech-AMI+MGB 48.5 26.5 41.6
(8) Speech-SWBD+MGB 48.5 27.5 42.1

(9) Combined-(1)&(6) 53.8 29.1 46.0
(10) Combined-(1)&(8) 53.5 29.9 46.2

Table 4.2 Precision, Recall, and F0.5 scores of the Text and Speech GED systems evaluated on
BULATS

Fig. 4.4 Precision-recall curves of single written-text based, single speech based, and combined
GED systems evaluated on BULATS



Chapter 5

Grammatical Error Correction (GEC)

This chapter considers the next step towards automatic language assessment and learning systems
that is the problem of automatically correcting grammatical errors in non-native spoken English.
This task is to develop a system that corrects grammatical errors in a given sentence. This
chapter investigates two approaches to building a GEC system. First, a GEC system is based
on a language model (LM) which is motivated by the fact that it does not require annotated
data, which is generally expensive and time-consuming to obtain. Second, a GED system is
based on a neural machine translation (NMT) model, which could capture more complex error
patterns but requires parallel corpora (erroneous and error-corrected) to train. This chapter uses
the processed CoNLL and BULATS data sets to evaluate the performance of both approaches
and will conclude the chapter by comparing the two approaches.

5.1 Language Model (LM) based Approach

This approach comprises two main components: confusion set generation, and lattice generation
& language model rescoring. In the first stage, a confusion set is constructed from the input
sentence to represent possible hypotheses or correction candidates. A GED system may be
used in this stage to reduce the number of hypotheses. In the second stage, the confusion set is
converted into its lattice representation, and a language model is used to rescore the lattice in
order to find the most probable sentence from the lattice, which will be the output of this system.

Fig. 5.1 The pipeline of LM-based GEC
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5.1.1 Confusion Set Generation

A confusion set is an efficient representation of a set of possible candidate sentences. In the
confusion set, the candidates of each word are represented by arcs. An example of confusion
set is shown in Figure 5.2a. For each word, its correction candidates are derived from the
Automatically Generated Inflection Database (AGID)1. The AGID contains the inflected forms
of a number of words in English. However, if the word is an article or a preposition, the
candidates are obtained from a set of pre-defined words as follows:

• Prepositions: [φ , ’about’, ’at’, ’by’, ’for’, ’from’, ’in’, ’of’, ’on’, ’to’, ’with’]

• Articles: [φ , ’a’, ’an’, ’the’]

where φ is the empty token meaning the word should be removed. Examples of correction
candidates derived from the AGID are: bear→ [bear, bears, bore, born, bearing], tall→ [tall,
taller, tallest]. Furthermore, if the part of speech of the word can be identified, the correction
candidates can be narrowed down, e.g. bear (N)→ [bear, bears], or bear (V)→ [bear, bears,
bore, born, bearing]. In addition, a GED system can reduce the number of words to be expanded.
The GED system assigns the probability of each word being grammatically incorrect, and if this
probability is lower than a threshold, e.g. 0.5, no candidates will be derived. It should be noted
that although training a GED system requires data to have error tags, it does not require pairs of
corrected and erroneous sentences to train. The steps are summarised in the pseudo-code below.

1: for word wt in w1:N do
2: if P(yt = incorrect|w1:N)< threshold then ▷ when GED is enabled
3: w1:Kt

t ← wt ▷ when GED is enabled
4: continue ▷ when GED is enabled
5: end if ▷ when GED is enabled
6: if wt in AGID then
7: w1:Kt

t ← AGID(wt)

8: else if wt in Prepositions then
9: w1:Kt

t ← Prepositions
10: else if wt in Articles then
11: w1:Kt

t ← Articles
12: else
13: w1:Kt

t ← wt

14: end if
15: end for

1http://wordlist.aspell.net/other/

http://wordlist.aspell.net/other/
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(a) Confusion Set
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(b) Word Lattice

Fig. 5.2 An example of confusion set and word lattice of the candidates

5.1.2 Lattice Generation & Rescoring

Once the confusion set has been created, it is converted into word lattice, which is an efficient
way of representing and decoding the list of candidate sentences which grow exponentially with
the number of words in a sentence. The reason for this conversion is that a large language model
will be used to decode, i.e. find the most likely path, efficiently. Since the Hidden Markov Model
Toolkit (HTK) [24] is used for lattice generation and rescoring, the confusion set described
in Section 5.1.1 is stored in the EBNF format. The conversion to word lattice is based on the
HParse tool in the HTK 2 that convert the EBNF format to the HTK Standard Lattice Format
(SLF). An example of a word lattice is shown in Figure 5.2b. There is related work on lattice
generation; for instance, in [25], confusion sets are converted to word lattices using finite state
transducer operations.

The lattice generation sets language model scores to zero as well as acoustic scores, which
are irrelevant in this project. In addition, it should be reasonable to assume that most of the
words in any sentence is more likely to be correct than incorrect. For example, the gold-standard
annotation of the CoNLL shows that grammatical errors account for about 18%. In Section 7.3,
the error statistics of the BULATS data is found to be 19.1%, and that of the CLC is 10.4%.
This information provides the prior knowledge about the lattice that the words from the original
sentence are more likely to be correct; hence, there is no correction required. We can, therefore,
incorporate this prior into the lattice by adding bias to the arcs corresponding to such words
since language model scoring is in the logarithmic domain.

In order to find the most likely sentence, a language model is used to rescore the lattice.
The intuition is that the language model will give higher scores to sequences of words that
appear more frequently in the training data assuming that the sentences in the training data, e.g.
the one-billion corpus have no grammatical errors. Therefore, this approach should output the
sequence that is the most natural or the most likely. The next section will provide background
knowledge of the language models used.

2http://htk.eng.cam.ac.uk/

http://htk.eng.cam.ac.uk/
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5.1.3 Language Model

A language model computes a probability for a sequence of words p(w1, ...,wN). In the final
stage of the LM-based GEC pipeline, the language model is used to find the most grammatical
sentence in a lattice, e.g. p(he likes playing tennis)> p(he likes play tennis):

ŵ1:N = argmax
∀w1:N

p(w1:N) = argmax
∀w1:N

N

∏
i=1

p(wi|wi−1, ...,w1) (5.1)

This work investigates three types of language models as follows:

• N-gram: An n-gram model is a probabilistic language model that computes the probability
of a word given its previous (n−1) words. During training, the probability of word wi

given words wi−1,wi−2...,wi−(n−1) is modelled as:

p(wi|wi−(n−1):(i−1)) =
C(wi−(n−1):(i−1),wi)

C(wi−(n−1):(i−1))
(5.2)

For instance, for the unigram and bigram models, these are:

p(w2|w1) =
C(w1,w2)

C(w1)
; p(w3|w1,w2) =

C(w1,w2,w3)

C(w1,w2)
(5.3)

Subsequently, the n-gram model estimates the probability of a sequence w1:N by:

p(w1, ...,wN) =
N

∏
i=1

p(wi|w1:(i−1))≈
N

∏
i=1

p(wi|wi−(n−1):(i−1)) (5.4)

• Recurrent Neural Network (RNN): An RNN Language Model (RNNLM) computes the
probability conditioned on all previous words by recursively multiplying weights at each
time step meaning it uses a vector ht to represent the full history {w1, ...,wt−1}. Given a
list of word input vectors x1, ...,xN , it computes:

ht = RNN(xt ,ht−1) (5.5)

ŷt = softmax(Wyht +by) (5.6)

p(wt+1 = word j|wt , ...,w1)≈ ŷt, j (5.7)

The softmax layer has a normalisation term ∑
|V |
i=1 exp(wT

y,iht +by,i) involving computing
the size of vocabulary |V | times, which is large, at each time step. This makes training
RNNLMs difficult, and it requires estimation methods such as NCE. The effective training
methods are not in the scope of this work, but can be found in [26, 27].

• succeeding words Recurrent Neural Network (suRNN): Since a complete sequence of
words is obtained before grammatical error correction, future word context can be used. A
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bi-directional RNNLM can incorporate all previous and future words; however, training it
efficiently is still challenging and not investigated in this project. Instead, an suRNNLM
that incorporates some future context and all previous context can be used [28]. The
probability is computed as

p(w1, ...,wN) =
1
Z

N

∏
i=1

p(wi|w1:(i−1),w(i+1):N) (5.8)

Although Equation 5.8 requires the normalisation term Z, for the GEC task, only relative
measures are required (to find the sentence with the highest probability). The advantage
of this model over RNNLMs is that it better approximates unnormalised p(w1, ...,wN) by
incorporating future context.

5.2 Neural Machine Translation (NMT) based Approach

Although the LM-based system can be trained without annotated data, it would require significant
human work to handle complex errors such as word re-ordering or deletion errors. Another
approach to GEC which can handle these errors better is to treat the task as a machine translation
problem. Traditionally, machine translation was done by breaking up sentences into multiple
parts and then translated them phrase-by-phrase. This system is also called phrase-based

statistical machine translation (SMT). SMT was widely used for GEC, and several of the best
performing systems in the CoNLL 2014 Shared Task on Grammatical Error Correction [13] were
based on SMT [29–32]. More recently, a neural machine translation (NMT) system started to
replace SMT because many error patterns are not captured by SMT systems due to data sparsity.
Unlike SMT, an NMT system addresses the local translation problem by using RNN which can
capture longer-term dependencies in sentences [33]. It reads the entire source sentence, encodes
the sentence into a vector representation, and makes a translation based on this representation.
This process of translation is more similar to how humans translate. As an NMT system translates
a source sentence to its target sentence, we can apply it to GEC by treating an erroneous sentence
as the source, and its correction as the target. There has been work which uses NMT models for
GEC for written texts such as [34–36]. The following parts will describe the architecture of an
NMT system used in this project.

5.2.1 Model Architecture

The NMT model is based on the encoder-decoder architecture. More specifically, the encoder
uses bi-directional LSTM to build a vector representing the input sentence. Given an input
sentence {w1, ...,wN}, each word is mapped using a word embedding giving the input vectors
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{x1, ..,xN}. These vectors are passed to the bi-directional LSTM encoder:

h⃗t = LSTM(xt , h⃗t−1) (5.9)

⃗ht = LSTM(xt , ⃗ht+1) (5.10)

h̄t = concat(⃗ht , ⃗ht) (5.11)

The decoder processes the encoded vector to make a translation. During training, the target
sentence {w′1, ...,w′M} is available. They are mapped to {y1, ..,yM} using word embedding as
in the encoder. The decoder has two uni-directional LSTMs since it makes translation in one
direction.

h(1)
t = LSTM(yt ,h

(1)
t−1) (5.12)

h(2)
t = LSTM(h(1)

t ,h(2)
t−1) (5.13)

and the first time step of the first LSTM is fed a special token x<go>, and the final state of the
encoder is used as an LSTM decoder input state. An attention mechanism with dot-product
attention described in Section 2.4 is used to obtain a context vector for each decoder time step:

ct = attention(key = h(2)
t ,states = {h̄1, ..., h̄N}) (5.14)

The context vector and the decoder hidden state are passed to a feedforward layer:

at = tanh(Wcct +Whh(2)
t +b) (5.15)

The output word at time step t is translated by finding the closest vector to at in the word
embedding. During inference, yt is not known, so at−1 is instead used, and this decoding method
is called greedy decoding. There are additional techniques which are added to the model as
follows:

• Dropout [37]: De-activate some nodes in the network randomly to prevent a single node
from specialising to a task. This method is a way of regularisation.

• Beam search decoding: Keep n best sequences at all time steps during inference. Note that
greedy decoding is equivalent to using the beam size of 1.

• Scheduled sampling [38]: During inference, the unknown previous token is replaced by a
token generated by the model. This introduces the discrepancy between training and infer-
ence which results in errors that accumulate as it translates. This technique incrementally
changes from target sequence being fully available to totally using predictions made by
the model during training.
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The multi-layer bi-directional LSTM architecture is also experimented. Since the bi-directional
LSTM encoder has 2 independent LSTMs propagating information in different directions, the
deeper network will have an even number of layers. For an n-layer NMT, n/2 LSTMs are stacked
in the forward encoder, n/2 LSTMs are stacked in the backward encoder, and n LSTMs are
stacked in the decoder. To train large neural networks efficiently, the residual connection [39] is
applied between the stacked LSTMs:

h(k+1)
t = LSTM(h(k)

t ,h(k+1)
t−1 )+h(k)

t (5.16)

In this project, we use LSTM as a recurrent unit, 200 dimensional embedding vector, bi-
directional LSTM layer with each direction having 128 units, maximum sentence length of
32. In addition, a dropout unit is added to the LSTM units of keep probability of 0.8, residual
connection is applied for deeper networks, and beam search decoding of width 10 is used in
inference. During training, the cross entropy is used used as the loss function, and scheduled
sampling is adopted.

Fig. 5.3 Standard encoder decoder with attention mechanism architecture. Figure adapted from
the TensorFlow NMT tutorial: https://github.com/tensorflow/nmt.

5.2.2 Implementation

The NMT system is implemented in Python (version 3.6) with TensorFlow3 (version 1.5.0) as
they are the most widely used open-source language and library for developing and training
machine learning models. TensorFlow library provides the basic building blocks such as RNN
units and attention mechanism cells. The source code developed for this project is made available
on GitHub4 which could also be used for any related machine translation task.

3https://www.tensorflow.org/
4https://github.com/potsawee/seq2seq

https://github.com/tensorflow/nmt
https://www.tensorflow.org/
https://github.com/potsawee/seq2seq
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5.3 Evaluation Metrics

M2 scorer

The M2 scorer [40] evaluates system performance by how well its hypothesis or its edits match
the gold-standard edits. It computes the sequence of phrase-level edits between a source sentence
and a system’s candidate that achieves the highest overlap with the gold-standard annotation.
Similar to the computation of precision and recall for error detection in Section 4.2, we compute:

P =
∑

n
i=1 |gi∩ ei|
∑

n
i=1 |gi|

(5.17)

R =
∑

n
i=1 |gi∩ ei|
∑

n
i=1 |ei|

(5.18)

where gi is the set of gold-standard edits for sentence i, and ei is the set of system edits for
sentence i. F-score is defined the same as Equation 4.6. The intersection between gi and ei is
defined as

gi∩ ei = {e ∈ ei|∃g ∈ gi,match(g,e)} (5.19)

This project uses the official scorer tool5 (version 3.2) of the CoNLL 2014 shared task [13].

5.4 Experiments

5.4.1 LM-based GEC

Three types of language models are used throughout this project: n-gram, RNN, and suRNN. In
this chapter, all of the language models are trained on the one-billion corpus. The 4-gram and
three variants of recurrent neural network language models are trained:

• RNN1: layers = 64k:300i:300g:64k

• RNN2: layers = 64k:300i:300g:300f:64k

• suRNN: layers = 64k:300i:300g:300f:64k

where i=linear projection layer, g=GRU based recurrent layer, and f=feedforward layer. The
vocabulary size is 64k. We use the CUED-RNNLM toolkit6 for training RNN language models.

5https://github.com/nusnlp/m2scorer
6http://mi.eng.cam.ac.uk/projects/cued-rnnlm/

https://github.com/nusnlp/m2scorer
http://mi.eng.cam.ac.uk/projects/cued-rnnlm/
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LM-based GEC without annotated data for training

Firstly, we investigate the LM-based system without using any annotated data. We train the
RNN1 language model on the one-billion corpus. Note that different types of language models
will be compared in the following experiment. This form of the LM-based system achieves F0.5

scores of 26.2 on CoNLL and 18.3 on BULATS. Without using more data, we tune the bias
term added to the arcs corresponding to original words, resulting in a small gain in F0.5 on both
evaluation sets, as shown in Figure 5.4.

LM-based GEC with GED

To improve the system, we consider the use of GED for confusion set generation. We use RNN1
language model as in the previous experiment and the GED system trained on the CLC data
without fine-tuning described in Chapter 4. The GED system operates at the 0.5 error threshold.
By applying GED for confusion set generation, it is found that both precision and recall increase,
and the F0.5 score improves by approximately 3.3 on CoNLL and 3.2 on BULATS. Then, we
tune the bias term for this system. The results in Figure 5.5 show that we can increase the F0.5

score by approximately 0.92 on CoNLL, whereas the F0.5 score increases by less than 1.0 on
BULATS.

LM-based GEC
CoNLL BULATS

P R F0.5 P R F0.5

baseline 34.4 13.4 26.2 28.0 7.7 18.3
+ bias 35.2 13.3 26.5 28.2 7.7 18.4
+ GED 40.4 14.2 29.5 31.4 9.5 21.5
+ GED + bias 43.5 13.8 30.4 31.7 9.5 21.6

Table 5.1 LM-based (RNN1) GEC performance on CoNLL and BULATS

(a) CoNLL (b) BULATS

Fig. 5.4 F0.5 of LM-based (RNN1) system at different values of bias term
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(a) CoNLL (b) BULATS

Fig. 5.5 F0.5 of LM-based (RNN1) system with GED at different values of bias term

RNNLM-based system at various operating points of GED

Since confusion sets are generated for words that are detected as errors by the GED system, it
introduces a trade-off between precision and recall of the GEC system. This is because as GED’s
recall increases, more words are inflected into their candidates, resulting in larger lattices; hence,
higher GEC’s recall. However, as the lattices become larger, the language model makes more
mistakes in selecting the correct path. The RNN1 language model is used. By varying GED’s
threshold, Figure 5.6 verifies the trade-off between precision and recall of GEC. For CoNLL,
the operating point of 16.3% recall rate or 0.50 error threshold yields the highest F0.5, and for
BULATS, that is 33.1% recall rate or 0.55 error threshold. Thus, when applying the GED system
in the subsequent experiments, the 0.50 error threshold will be chosen.

(a) CoNLL (b) BULATS

Fig. 5.6 LM-based (RNN1) GEC system at various GED’s operating points.

N-gram and RNN Language Models for GEC

The use of language models is crucial for this approach, so it is worthwhile to compare between
different types of language models for lattice rescoring. The LM-based GEC with GED operating
at the 0.50 error threshold is used. We train 4-gram, RNN1, RNN2, and suRNN language models
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on the one-billion corpus. In Table 5.2, the results show that the 4-gram model has the highest
precision score, but the lowest F0.5 score among all models. When comparing the recurrent
language models, the state-of-art suRNN model has the highest precision, recall, and F0.5 score.
RNN2, which has an additional layer to RNN1, has a lower performance level than RNN1. In
conclusion, we can improve the previous LM-based system by replacing RNN1 with suRNN.

LM
CoNLL BULATS

P R F0.5 P R F0.5

4-gram 44.7 12.0 28.9 34.5 8.3 21.1
RNN1 40.4 14.2 29.5 31.4 9.5 21.5
RNN2 39.8 14.1 29.2 31.0 9.5 21.4
suRNN 42.4 14.3 30.5 32.0 9.6 21.9

Table 5.2 LM-based GEC (with GED) with different LMs trained on the one-billion corpus

GEC with an idealised GED

Because applying GED to the pipeline yields a gain of around 3.2 in F0.5, this experiment aims
to determine the maximum gain we could achieve given an idealised GED system. As the labels
of words in both CoNLL and BULATS data sets can be determined, it is possible to use this
information to expand all the words that are being grammatically incorrect, hence, idealised or
perfect GED. It should be noted that the GEC performance is now limited by the coverage of
AGID, which will be discussed in the next part, and the language model. As shown in Table
5.3, we could achieve an improvement in F0.5 at most around 10 to 15 by improving the GED
system. This may not be the best option as a large amount of in-domain error-tagged data would
be required to achieve the idealised GED. In [23], the best performing GED system evaluated on
BULATS has the F0.5 of 55.8, which is still far from being ideal.

LM
CoNLL BULATS

GED GED* gain GED GED* gain

RNN1 29.5 39.9 10.4 21.5 36.6 15.1
RNN2 29.2 40.3 11.1 21.4 36.2 14.8
suRNN 30.5 40.8 10.3 21.9 36.7 14.8

Table 5.3 F0.5 of LM-based using trained GED (denoted by GED) and with idealised GED
(denoted by GED*)
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Coverage of AGID

Using the LM-based approach, although GEC’s precision could be as high as 100, GEC’s recall
is limited by the AGID, and this could be measured by coverage. The coverage is the percentage
of the errors that can be corrected by the AGID and the pre-defined sets; hence, this represents
the upper bound of the GEC’s recall. In Table 5.4, the coverage of deletion errors is zero
because the current LM-based system only derives inflected forms of a word. Insertion errors
and multiple-edit errors are grouped into the complex error type. Due to the nature of BULATS
that has more insertion errors than CoNLL, the higher coverage of complex errors in BULATS is
observed.

Data Substitution Deletion Complex Overall

CoNLL 63.1 0.0 39.3 51.2
BULATS 79.5 0.0 69.0 56.7

Table 5.4 Coverage of AGID on different data sets

By considering the overall coverage, given an idealised language model, the maximum recall
rate that the LM-based approach can achieve is 51.2 on CoNLL, and 56.7 on BULATS. In fact,
the actual recall is lower due to word re-ordering in correction.

5.4.2 NMT-based GEC

Training details

In contrast to the LM-based approach, the NMT-based approach requires pairs of source (erro-
neous) and target (corrected) sentences for training. In this project, we use the CLC.

Bi-LSTM with attention mechanism

We train the baseline NMT system which is the bi-directional encoder LSTM with the attention
mechanism. Dropout, beam search decoding, scheduled sampling, and pre-trained embedding
techniques are then added to the NMT system. We evaluate the NMT system on CoNLL and
BULATS for each modification. Table 5.5 shows the following:

• Dropout improves the precision of the system although the recall drops; this suggests that
it makes fewer mistakes in correction which is desirable for feedback systems.

• Beam search decoding improves both the precision and the recall in both evaluation sets;
thus, this decoding method should be used instead of the greedy search decoding.

• Scheduled sampling appears to add a small gain in the precision on both sets, whereas the
recall drops.
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• Pre-trained embedding could be an unnecessary feature to be added since both precision
and recall decrease on CoNLL, and it only increases precision marginally on BULATS.

NMT model
CoNLL BULATS

P R F0.5 P R F0.5

baseline NMT 32.5 25.3 30.8 38.6 21.4 33.2
+ dropout 34.9 23.7 31.9 39.8 19.5 32.9
+ beam search decoding 35.4 24.1 32.4 41.3 20.2 34.2
+ scheduled sampling 36.2 23.4 32.6 41.4 19.7 33.9
+ pre-trained embedding 35.0 21.7 31.2 41.8 18.4 33.3

Table 5.5 GEC performance of NMT systems

Training Deeper Models

In this experiment, we are interested in whether having more layers will improve the system.
The NMT system with scheduled sampling is extended to 4-layer and 6-layer models. Note that,
the number of layers is even because a bi-directional LSTM encoder is used. The first two rows
in Table 5.6 show that vanilla deeper models have lower performance than the 2-layer model. We
then apply residual connection and decaying learning rate techniques to these deeper models, and
the results show that these techniques improve the performance of the deeper models; however,
they are only comparable or worse than the 2-layer model.

In [41], it is shown that deeper NMT models give better results on machine translation
tasks. In contrast, we find the opposite result for GEC on the CoNLL and BULATS evaluation
sets. Although deeper models are more capable of capturing more error patterns and longer
dependencies, they are more prone to the over-fitting problem. Also, for GEC, many grammatical
errors are identified by a few words nearby rather than longer sequences. As a result, the deeper
models do not outperform the 2-layer model in this experiment.

NMT model
CoNLL BULATS

P R F0.5 P R F0.5

4-layer 33.4 22.9 30.6 40.6 20.1 33.7
6-layer 32.2 18.8 28.2 37.8 15.4 29.3

4-layer + residual 33.5 24.4 31.1 40.4 19.9 33.5
6-layer + residual 32.2 22.8 29.8 39.0 18.4 31.9
4-layer + residual + decaying α 36.0 23.0 32.3 42.1 19.4 34.1

Table 5.6 Training Deeper Models
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Transfer Learning

In [23], the GED system is fine-tuned to the BULATS data by performing 10-fold cross-validation,
which increases the F0.5 score by 11.7. This result motivates us to apply transfer learning to
our NMT systems. The BULATS data set is shuffled and split into 5 distinct subsets. A 5-fold
cross-validation experiment was carried out where 4 subsets are used for fine-tuning the NMT
system trained on the CLC, and the other subset is held-out for evaluation. The overall result is
obtained by combining all held-out blocks together before scoring against the reference. This
process is also carried out on the CoNLL data set, where the corrected (target) sentences are
chosen from the first annotator.

As shown in Table 5.7, the transfer learning method yields 4.8 and 7.2 improvements in
F0.5 on the two evaluation sets. The larger improvement on the BULATS data compared to
the CoNLL data could be because the difference between the CLC (written-text) and BULATS
(prompt responses) is more significant than that between the CLC (written-text) and CoNLL
(written-text).

NMT system
CoNLL BULATS

P R F0.5 P R F0.5

baseline 36.2 23.4 32.6 41.4 19.7 33.9

set 1 47.5 22.5 38.8 47.6 24.9 40.3
set 2 43.9 22.7 37.0 49.3 26.8 42.2
set 3 46.8 21.3 37.7 48.0 23.6 39.7
set 4 43.9 23.4 37.3 49.7 25.8 41.9
set 5 41.8 23.4 36.1 49.9 24.7 41.5

overall 44.7 22.6 37.4 48.9 25.2 41.1

Table 5.7 NMT system with transfer learning on CoNLL and BULATS data sets

5.5 Comparison between the two approaches

We have investigated two approaches for GEC on two data sets: written-text (processed) CoNLL
and the manual transcription of BULATS data. This section provides the main findings from
the experiments and compares the two approaches. In summary, for the LM-based approach, it
suffers a low recall rate and hence, low F0.5 score because it cannot correct deletion errors, and it
cannot handle word-reordering. A GED system can be applied in the confusion set generation
stage, resulting in a gain of about 3.2 in F0.5. Tuning bias for LM-based systems only gives a
small gain in F0.5, lower than 1.0, due to the trade-off between precision and recall. For the
NMT-based system, it consistently has a higher performance level than the LM-based system,
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especially on BULATS, at the cost of obtaining parallel corpora for training. Transfer learning
can be applied to the NMT system giving a large gain in F0.5 on both evaluation sets.

When comparing the two approaches, Figure 5.7 shows that without using annotated data,
the LM-based approach could achieve F0.5 scores of 26.5 and 18.4 on CoNLL and BULATS
respectively. Given data with error tagged for GED, which is more straightforward to obtain
than data annotated for GEC, is available, they can be used to increase the performance of the
LM-based. The increase found on CoNLL makes the LM-based system merely worse than the
NMT-based system by around 2 in F0.5; however, on BULATS, the LM-based system remains at
a low performance level even with GED. This could be because the LM-based system cannot
correct deletion errors and re-order words which occur more frequently in spoken language. If
data annotated for GEC is available, the NMT-based approach should be chosen as the NMT
system without transfer learning outperforms the LM-based approach using GED and tuning bias
on both evaluation sets. Furthermore, if the matched data is available, one could perform transfer
learning on the NMT system, which yields the best performing system. Moreover, Section 6.2
will present further improvement by performing GEC system combination.

GEC system Training data

LM Unannotated
LM + GED Unannotated + Error Tagged

NMT Corrected
NMT + TL Corrected + Corrected (target domain)

Table 5.8 Summary of data required to train different GEC systems. Note that corrected data
refers to parallel texts consisting of the corrected version and the erroneous version. TL denotes
transfer learning.

(a) CoNLL (b) BULATS

Fig. 5.7 Summary of the GEC systems where LM-based system uses RNN1 language model,
NMT1 is the bi-LSTM model using beam search decoding, dropout, and scheduled sampling.
TL denotes transfer learning.



Chapter 6

Fluency Score

The fluency score is defined as the log-probability of a sentence computed by a language model:

F(w1:N) =
1
N

log p(w1:N) =
1
N

N

∑
i=1

log p(wi|wi−1, ...,w1) (6.1)

Provided that the same language model is used, this score can be used as a relative measure
of how likely the sentence is. [42] illustrates the use of a language model for evaluating the
fluency of a sentence. A sentence’s fluency can be used in both training and inference. During
training, less fluent sentences could be generated from grammatical sentences using either n-gram
statistics or reverse NMT, and only those with lower fluency scores are kept for further training
GEC systems. In the inference stage, the score could be used for selecting the most fluent
sentence from a list of candidates generated by multiple GEC systems in combination, and it
could be used for re-ordering candidates in the beam search decoding. The probability can be
approximated using an n-gram or RNN language model as described in Section 5.1.3. This
empirical investigation aims to obtain a language model such that the difference of the scores
between more fluent and less fluent text is as large as possible.

δ (w(c)
1:N ,w

(i)
1:N) = F(w(c)

1:N)−F(w(i)
1:N) (6.2)

This chapter includes two examples of the application of the Fluency Score: GEC system
combination, and NMT re-ordering.

6.1 The distribution of the Fluency Score on the CLC

The number of sentences in the CLC is 874K, of which 380K (43%) contains no grammatical
errors, so in this experiment, 494K sentences with grammatical errors are investigated. The
difference is computed as defined in Equation 6.2. Out-of-vocabulary (OOV) words result in
unexpectedly low fluency scores; hence, if the number of OOV words in a sentence is different
from that of its pair, this sentence pair is rejected, and not included in the calculation. They are

33
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shown in Tables 6.1 and 6.2 as Rejected1 and Rejected2; Rejected1 is when the number of OOV
words in an error-corrected sentence is fewer than that of the learner-written sentence in the CLC,
and vice versa for Rejected2.

Firstly, a 5-gram language model is trained on each of the corpora to examine which corpus
yields the best discrimination. The vocabulary file is built consisting of the words that have
more than three occurrences in the one-billion corpus. Table 6.1 shows that the 5-gram model
trained on the one-billion corpus gives the highest mean and the highest percentage of positive
difference. This result should be expected because the one-billion corpus is by far the largest in
size - about 20 times larger than the Fisher corpus.

Training Data Vocab Size Rejected1 Rejected2 Mean Std +ve %

AMI 18.8K 11.7 6.3 0.117 0.367 52.8
Switchboard 27.5K 11.8 5.3 0.146 0.374 55.4

MGB 51.8K 11.1 2.8 0.179 0.416 59.7
Fisher 68.7K 8.5 2.4 0.210 0.425 63.3

One-Billion 64.0K 9.5 1.7 0.354 0.489 71.5

Table 6.1 Fluency Score results based on 5-gram LM trained on different datasets

Secondly, three variants of language models are trained on the one-billion corpus. The RNNLM
is the suRNN model described in Section 5.4.1. Table 6.2 shows that the RNNLM is slightly
better than the 5-gram LM; both 5-gram and RNN models have the same mean although the
RNNLM has lower variance and a higher percentage of positive difference. In practice, as the
RNNLM requires more computation, hence, takes longer time, the 5-gram LM trained on the
one-billion corpus is selected for subsequent experiments requiring the fluency score.

Language Model Rejected1 Rejected2 Mean Std +ve %

4-gram 9.5 1.7 0.351 0.486 71.4
5-gram 9.5 1.7 0.354 0.489 71.5
RNN 9.5 1.7 0.354 0.478 73.2

Table 6.2 Fluency Score results based on different LMs trained on the one-billion corpus with
vocabulary size of 64.0K
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(a) 5-gram LMs trained on different data sets (b) Different LMs trained on the one-billion corpus

Fig. 6.1 The distribution of the difference of the log-probability

6.2 GEC System Combination

One-best outputs from two systems are combined using the character-level Levenshtein distance
[43], which computes the number of edit operations required to change the source sentence into
the target sentence. The alignment effectively gives a confusion set, which represents all possible
candidates from the two systems. Finally, the most likely sentence from all combinations is
selected using the fluency score. For example,

----------------------------------------------------

System1’s output:

you prepare chicken with curry and rice

System2’s output:

you prepared chicken curry and rice

----------------------------------------------------

Alignment:

you prepare chicken with curry and rice

you prepared chicken **** curry and rice

----------------------------------------------------

Possible Combinations:

you prepared chicken curry and rice

you prepared chicken with curry and rice

you prepare chicken curry and rice

you prepare chicken with curry and rice

----------------------------------------------------
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6.2.1 Experiments

The one-best outputs of LM-based and NMT-based GEC systems are aligned and combined as
described previously. In the implementation, the maximum number of candidates is limited to
1024 to avoid the confusion set being too large. In this experiment, we use the LM-based system
as trained in Section 5.4.1. Furthermore, we revisit the training of NMT systems and obtain two
models: baseline-clc and large-clc. The baseline-clc system is trained on the same amount of
the CLC data as in Section 5.4.1, but the data are further tokenised using the NLTK package in
Python. The large-clc system is trained on the largest CLC available to this project.

Results

The revised baseline-clc NMT system achieves higher F0.5 on CoNLL since the processing done
is closer to CoNLL, and its performance on BULATS is only slightly higher. The results show
that any combination of systems has higher precision than a single system. In Table 6.3, any
combined system has higher F0.5 than a single system when evaluated on CoNLL. In Table
6.4, due to the significantly low recall rate of the LM-based system on BULATS, the combined
systems do not outperform a single NMT system; nevertheless, combing two NMT systems still
results in a better system.

System Variant P R F0.5

(1) LM-based suRNN 42.4 14.3 30.5
(2) NMT-based baseline-clc 40.1 25.2 35.8
(3) NMT-based large-clc 42.9 25.8 37.8

(1) and (2) 5gram-onebillion 45.3 24.1 38.5
(1) and (3) 5gram-onebillion 46.4 24.4 39.3
(2) and (3) 5gram-onebillion 43.0 27.3 38.6

Table 6.3 GEC system combination evaluated on CoNLL

System Variant P R F0.5

(1) LM-based suRNN 32.0 9.6 21.9
(2) NMT-based baseline-clc 40.3 21.8 34.4
(3) NMT-based large-clc 42.0 24.5 36.7

(1) and (2) 5gram-onebillion 40.7 18.2 32.6
(1) and (3) 5gram-onebillion 42.3 20.6 35.0
(2) and (3) 5gram-onebillion 42.3 25.7 37.4

Table 6.4 GEC system combination evaluated on BULATS
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6.3 NMT-based system Re-ordering

This experiment investigates the potential gain from re-ordering the output of an NMT system.
In [44], the output of an SMT-based system for GEC is re-ordered using four types of features,
including SMT’s score and LM’s score to train a support vector machine. In this experiment,
we experiment the simplest way of re-ordering that is to re-order the 10-best output of a beam-
search-decoding NMT system using the LM’s score.

6.3.1 Experiments

We use the large-clc NMT system as our baseline, and the output of this system is re-ordered
using the 5-gram LM trained on the one-billion corpus. Table 6.5 shows that by re-ordering,
although the recall rate increases, the precision rate decreases; overall, the reduction in F0.5

suggests re-ordering the output solely on the fluency score does not yield improvement.

System
CoNLL BULATS

P R F0.5 P R F0.5

Baseline 42.9 25.8 37.8 42.0 24.5 36.7
Baseline (Re-ordered) 33.4 33.5 33.4 34.6 29.3 33.4

Table 6.5 Re-ordering the output of NMT evaluated on CoNLL & BULATS

6.4 Summary

This chapter investigated the fluency score that can be used to differentiate more fluent sentences
from less fluent ones. Two applications of the score were experimented. The findings suggest
the following points:

• The quantity of training data is more important than the type of language model.

• Combining the NMT-based system with the LM-based system results in a GEC system
that has higher precision but lower recall. It is found that if the recall of the LM-based
system is not significantly lower, the overall F0.5 score will be higher.

• Using the fluency score to re-order the output of the NMT system without taking into
account the score from beam search decoding should be avoided.
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Data Augmentation

Having a larger amount of training data for both GED and GEC systems generally improves the
performance of the systems. However, there is a little amount of spoken language data being
annotated for GED and GEC tasks, and this makes it more challenging to develop good systems.
On the other hand, the written language corpora which have been annotated for GED and GEC
tasks are considerably larger in size, so they could be used to expand the training data for spoken
language GED and GEC systems. In [45], a phrase-based SMT system and a pattern extraction
based on part-of-speech tags are used to generate artificial data for training GED systems.

In this work, n-gram models and neural machine translation (NMT) models are used to
for data augmentation. These two approaches extract error patterns from a source corpus and
subsequently propagate the errors onto a target corpus. We investigate two aspects of data
augmentation: the statistics of the corrupted corpus, and improving GED systems using the
augmented data.

7.1 N-gram Statistics

As explained in section 5.1.3, an n-gram model computes the probability of a word given its
previous (n−1) words. In this section, the n-gram language model is applied to parallel corpora
as follows:

P(Ai→ Bi|Ai−1,Ai−2, ...,Ai−(n−1)) =
C(Ai−(n−1):i,Bi)

C(Ai−(n−1):i)
(7.1)

where Ai−(n−1):i is a sequence of length n in the source corpus A, and (Ai−(n−1):i,Bi) is the
sequence Ai−(n−1):i with the final word corresponding to Ai in the target corpus B is Bi. For
example,
Unigram Model:

P(Ai→ Bi) =
C(Ai,Bi)

C(Ai)
(7.2)

38
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Bigram Model:

P(Ai→ Bi|Ai−1) =
C((Ai−1,Ai),Bi)

C(Ai−1,Ai)
(7.3)

An example of a parallel corpora where the source data (corpus A) has no error, and the target
data (corpus B) contains errors made by learners. A deletion error is denoted by ***.

Source (A) | Target (B)

-----------------------------

the -> the

cat -> cat

sat -> sit

on -> in

the -> ***

mat -> mat

-----------------------------

The form of estimation suggests that although higher-order of n-gram can better capture depen-
dencies between words, counting sequences in a sparse data set results in a poor estimate as there
could be only a few occurrences of each sequence.

The distributions of words in two corpora may differ due to multiple factors. For example,
one corpus is about business meeting such as AMI, and the other is telephone conversation such
as Switchboard or Fisher. In addition, one could be a transcription of speech data, and the other
is written text. As a result, some corrupted words appear too frequently, while the other may not
appear at all. To illustrate this problem, consider an example of training the unigram model on
the CLC, and use the model to corrupt the AMI corpus. Assume that in the CLC,

P(stuff→ staff) = 0.1

in the AMI corpus,
C(stuff) = 1000, C(staff) = 10

After corrupting, assume that all of the word staff’s get mapped staff, and no other words get
mapped to staff apart from stuff, the corrupted AMI data will have the following distribution:

P(incorrect|staff) =
100

100+10
= 0.909

Therefore, when a GED system is trained on this corrupted AMI data, it is likely to label the
word staff as being incorrect with unexpectedly high probability.

One method to mitigate this problem is by balancing distributions for words across the
training data (e.g. CLC) and the data to-be-corrupted (e.g. AMI), for the unigram model:

P∗(Ai→ Bi) = min
(

0.1×
Ccorrupted(Bi)

Ccorrupted(Ai)
,P(Ai→ Bi)

)
(7.4)
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where Ccorrupted(Ai) and Ccorrupted(Bi) are the counts of words Ai and Bi in the corpus to-be-
corrupted. The model in Equation 7.4 will be denoted as the modified unigram model. The
intuition is that if there are only few counts of word Bi in the corpus to be corrupted, we should
limit the transition probability to the ratio Ccorrupted(Ai)

Ccorrupted(Bi)
, and the factor 0.1 is introduced because

there could be multiple words that are mapped to Bi.

7.2 NMT Statistics

Alternatively, the error statistics can be modelled using a neural network. This is similar to the
machine translation problem where a neural network can be used for translating from one to
another language. For this task, the source sentence is the error-corrected version, and the target
sentence is the erroneous version. This approach is also known as reverse translation.

The neural networks used in this experiment are the Bi-LSTM with attention mechanism
described in Section 5.2.1. Once the NMT models have been trained, the models can be used to
corrupt error-free corpora, i.e. to translate from good English sentences to less grammatical ones.
At the inference time, we investigate two decoding methods:

• Sampling: samples from the distribution of the output layer instead of using argmax, and
passes the result through an embedding layer to get the next input.

• Beam search: explores the search space of all possible translations by keeping a small set
of top candidates, e.g. 10, as the decoding takes place.

7.3 Experiments

7.3.1 Corrupting Native Speech Corpora

In the area of speech processing, there are various native speech corpora available ranging from
the AMI corpus of size 2M words to the Fisher corpus of size 35M words. Hence, this experiment
aims to investigate the extent to which we can corrupt these corpora using error statistics from
the CLC to build a system to work on speech data such as BULATS.

Grammatical Error Statistics

Table 7.1 shows that the BULATS data set, which is speech, has almost twice as many grammati-
cal errors as the CLC, which is written text, with the insertion error rate being about four-fold
higher. This illustrates one difference between speech and written text that when learners
speak, they are more likely to make mistakes by saying unnecessary or missing words. However,
word-choice mistakes as shown by the substitution error percentage are not significantly different.
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Corpus %Error %Substitution %Insertion %Deletion

CLC 10.40 5.72 1.99 2.70

AMI 8.20 4.01 1.52 2.66
Switchboard 8.46 4.15 1.62 2.70

MGB 8.88 4.61 1.55 2.72
Fisher 8.11 3.96 1.61 2.54

BULATS 19.08 6.20 7.94 4.95

Table 7.1 Statistics of the CLC, BULATS, and native-speech corpora after corrupting using the
modified unigram statistics.

7.3.2 GED with Data Augmentation

Setting

We investigate five models for error generation: unigram, modified unigram, bigram, NMT
with sampling decoding, and NMT with beam search decoding. All of the models are trained
on the CLC, and the trained models are used for corrupting grammatically correct data. We
decide to corrupt: (1) the corrected version of the FCE-public training set which matches the
CLC, and (2) the manual transcription of the Switchboard corpus which does not match the
CLC, but represents speech data. The GED system with augmented data is evaluated on: (1) the
FCE-public test set, (2) the BULATS data set, and (3) the NICT-JLE data set. The baseline GED
model is trained on the FCE-public training data set. Then, each of the different versions of the
corrupted data is added in addition to the FCE-public training set to train a GED system. We
repeat the addition of corrupted data 10 times. Five settings shown in Table 7.2 are investigated.

Results

The empirical findings show that the performance of GED increases by using augmented
data from any of the corruption models in any experimental setting, as shown in Figure 7.1.
Furthermore, the results show that the bigram model is more suitable than both the unigram and
the modified unigram model. This could be because the unigram models do not make use of the
context of errors, in other words, they only learn the likelihood of each word being incorrect from
the CLC and propagate this information onto the target data. For the NMT corruption method,
Figure 7.1 shows that in all the settings, the beam search decoding method is always worse than
sampling decoding, and NMT with beam search decoding and bigram models are comparable,
and they are the most suitable models for error generation. Lastly, when comparing the gain in
setting (2) to the gain in setting (3), we can see that augmenting the switchboard data, which are
more similar to the BULATS data than the FCE-public data are, gives a higher gain. A similar
trend can be seen when comparing setting (4) and (5) which evaluate the system on NICT-JLE.
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Setting Corrupted Eval
Highest F0.5

baseline ugrm ugrm* bgrm samp beam

(1) FCE FCE 35.1 44.1 43.1 45.0 44.9 42.5
(2) FCE eval3 27.9 33.8 33.9 34.2 34.5 31.4
(3) SWBD eval3 27.9 36.7 37.6 37.4 37.9 33.0
(4) FCE NICT 32.7 41.9 41.4 42.2 40.5 37.6
(5) SWBD NICT 32.7 43.1 43.1 43.2 41.0 37.4

Table 7.2 The highest values of F0.5 for different corrupting methods after folding corrupted data
10 times to FCE-public. The statistics is extracted from the CLC for all experiments. Baseline
systems were trained on FCE-public without additional data.

(a) Setting 1: F0.5 on FCE-public test

(b) Setting 2: F0.5 on BULATS

(c) Setting 3: F0.5 on BULATS

Fig. 7.1 F0.5 for the three experiments as the augmented data increase. Note that the results for
settings 4 and 5 follow the same trend as settings 2 and 3.



Chapter 8

Conclusions and Future Work

This project focused on GED and GEC for non-native spoken English. We pre-processed our
written-text data such that they became more similar to speech data. The processed written-text
data included the FCE-public and CoNLL, which we used as our evaluation sets. Also, our
primary spoken-language evaluation set was the manual transcription of the spontaneous spoken
responses from the BULATS examination.

Grammatical Error Detection

We treated the problem as a sequence labelling task, and we trained the bi-directional LSTM
model on the written-text CLC as our baseline system. We evaluated the baseline system on
written and spoken data, and we illustrated the need to improve the system for spoken language
purpose. We showed that combining GED systems trained on written text and corrupted native
speech data yielded a gain in F0.5 on BULATS although this was not as high as the gain achieved
by fine-tuning. Future work on GED includes meta-data extraction, which looks at spoken GED
from another direction by processing the speech data to be closer to written text data such as
removing false starts and repetitions. Besides, a new architecture of the sequence labeller such
as pure self-attention mechanism could improve the performance for both written and spoken
language data.

Grammatical Error Correction

We developed LM-based GEC and NMT-based GEC systems, and each of them was evaluated
on CoNLL and BULATS data sets. The LM-based approach was considered as it does not rely
on annotated data for training. Its F0.5 score was lower than that of the baseline NMT system on
both CoNLL and BULATS. If error-tagged data are available, a GED system can be trained, and
by applying the GED system in confusion set generation, the system’s performance level went
up to almost the same level as that of the NMT system on CoNLL. However, when evaluated on
speech data or BULATS, the LM-based system was considerably worse than the NMT system,
even when the GED system was used. This is likely because the LM-based system is unable

43
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to correct deletion errors and to re-order word. When comparing language models, we found
that the suRNNLM yielded the highest F0.5 score on both evaluation sets. The NMT-based
approach was shown superior to the LM-based approach, but it requires parallel corpora for
training. Moreover, the NMT system can be fine-tuned to the target domain in order to mitigate
the problem of domain mismatch, resulting in the best performing system. Future work on GEC
includes data augmentation where additional speech training data can be derived from n-gram
statistics or reverse NMT. Another interesting way for improvement is the ensemble method.

Fluency Score

Language models can be used for measuring the fluency of a sentence. In this work, it was
shown that an essential aspect of obtaining good fluency score is the quantity of training data.
The one-billion corpus resulted in a model that best differentiated between correct and incorrect
sentences. The type of language models, however, is less critical as there was a small gain
obtained from using suRNN instead of 5-gram model. One application that illustrates the use of
this score is the GEC system combination, which resulted in a system that outperforms a single
GEC system on both evaluation sets. Future work will look at applying this score for filtering
reverse NMT for data augmentation.

Data Augmentation

We investigated error generation models based on n-gram and NMT. We found that augmented
data from any error generation model increased the performance of GED. When comparing the
models, the result showed that the bigram and NMT with sampling decoding models were the
most suitable for error generation. Another finding was that augmenting grammatically correct
data that are more similar to the target corpus gave a better result. Future work includes applying
both the error generation models to improve GEC systems further. Also, the NMT model with
beam search may need to be visited as it performed noticeably worse than the other models.



References

[1] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560, 1990.

[2] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, Nov 1997.

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997.

[4] Julian Richard Medina and Jugal Kalita. Parallel attention mechanisms in neural machine
translation. In 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), pages 547–552. IEEE, 2018.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018.

[7] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. URL https://s3-us-west-2. amazonaws.
com/openai-assets/research-covers/languageunsupervised/language understanding paper.
pdf, 2018.

[8] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL,
2018.

[9] Diane Nicholls. The Cambridge Learner Corpus - error coding and analysis for lexicography
and ELT. In Proc. of the Corpus Linguistics 2003 conference; UCREL technical paper
number 16., 2003.

[10] Andrew Caines, Diane Nicholls, and Paula Buttery. Annotating errors and disfluencies in
transcriptions of speech. Technical Report UCAM-CL-TR-915, University of Cambridge
Computer Laboratory, Dec 2017.

[11] K.M. Knill et al. Impact of asr performance on free speaking language assessment. In
INTERSPEECH, pages 1641–1645, 2018.

[12] Emi Izumi, K. Uchimoto, and H. Isahara. The NICT JLE Corpus Exploiting the lan-
guage learners’ speech database for research and education. International Journal of The
Computer, the Internet and Management, 12(2):119–125, May 2004.

45



REFERENCES 46

[13] T. Briscoe et al. Ng Hwee Tou, Wu Siew Mei. The conll-2014 shared task on grammatical
error correction. In Proceedings of the Eighteenth Conference on Computational Natural
Language Learning: Shared Task (CoNLL-2014 Shared Task), 2014.

[14] Iain McCowan, Jean Carletta, and et at. Kraaij. The ami meeting corpus. In Proceedings
of the 5th International Conference on Methods and Techniques in Behavioral Research,
volume 88, page 100, 2005.

[15] J. J. Godfrey, E. C. Holliman, and J. McDaniel. Switchboard: telephone speech corpus
for research and development. In Proceedings ICASSP-92: 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1992.

[16] Christopher Cieri, David Miller, and Kevin Walker. The fisher corpus: A resource for the
next generations of speech-to-text. 01 2004.

[17] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp
Koehn. One billion word benchmark for measuring progress in statistical language model-
ing. CoRR, abs/1312.3005, 2013.

[18] Edward Loper and Steven Bird. NLTK: the natural language toolkit. CoRR, cs.CL/0205028,
2002.

[19] Marek Rei and Helen Yannakoudakis. Compositional sequence labeling models for error
detection in learner writing. CoRR, abs/1607.06153, 2016.

[20] Marek Rei, Gamal K. O. Crichton, and Sampo Pyysalo. Attending to characters in neural
sequence labeling models. CoRR, abs/1611.04361, 2016.

[21] Ryo Nagata and Kazuhide Nakatani. Evaluating performance of grammatical error detection
to maximize learning effect. In Proceedings of the 23rd International Conference on
Computational Linguistics, 2010.

[22] Marek Rei. Semi-supervised multitask learning for sequence labeling. CoRR,
abs/1704.07156, 2017.

[23] KM Knill, MJF Gales, PP Manakul, and AP Caines. Automatic grammatical error detection
of non-native spoken learner english. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 8127–8131. IEEE, 2019.

[24] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw, Xunying Liu,
Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, et al. The htk book. 2002.

[25] Felix Stahlberg, Christopher Bryant, and Bill Byrne. Neural grammatical error correction
with finite state transducers. CoRR, abs/1903.10625, 2019.

[26] X. Chen, X. Liu, Y. Wang, M. J. F. Gales, and P. C. Woodland. Efficient training and
evaluation of recurrent neural network language models for automatic speech recognition.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(11):2146–2157,
Nov 2016.

[27] Yichen Yang. Large Scale Language Models for Speech Recognition Technical Abstract.
PhD thesis, University of Cambridge, 2018.

[28] Xie Chen, Xunying Liu, Anton Ragni, Yu Wang, and Mark J. F. Gales. Future word
contexts in neural network language models. CoRR, abs/1708.05592, 2017.



REFERENCES 47

[29] Mariano Felice, Zheng Yuan, Øistein E Andersen, Helen Yannakoudakis, and Ekaterina
Kochmar. Grammatical error correction using hybrid systems and type filtering. In
Proceedings of the Eighteenth Conference on Computational Natural Language Learning:
Shared Task, pages 15–24, 2014.

[30] Marcin Junczys-Dowmunt and Roman Grundkiewicz. The amu system in the conll-2014
shared task: Grammatical error correction by data-intensive and feature-rich statistical
machine translation. In Proceedings of the Eighteenth Conference on Computational
Natural Language Learning: Shared Task, pages 25–33, 2014.

[31] Anoop Kunchukuttan, Sriram Chaudhury, and Pushpak Bhattacharyya. Tuning a grammar
correction system for increased precision. In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning: Shared Task, pages 60–64, 01 2014.

[32] Yiming Wang, Longyue Wang, Xiaodong Zeng, Derek F Wong, Lidia S Chao, and Yi Lu.
Factored statistical machine translation for grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natural Language Learning: Shared Task,
pages 83–90, 2014.

[33] Yonghui Wu, Mike Schuster, and et al. Zhifeng Chen. Google’s neural machine translation
system: Bridging the gap between human and machine translation. CoRR, abs/1609.08144,
2016.

[34] Zheng Yuan. Grammatical error correction in non-native English. PhD thesis, University
of Cambridge, 2017.

[35] Shamil Chollampatt and Hwee Tou Ng. A multilayer convolutional encoder-decoder neural
network for grammatical error correction. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[36] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Shubha Guha, and Kenneth Heafield.
Approaching neural grammatical error correction as a low-resource machine translation
task. CoRR, abs/1804.05940, 2018.

[37] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[38] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. CoRR, abs/1506.03099, 2015.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

[40] Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error correction.
In NAACL, 2012.

[41] Antonio Valerio Miceli Barone, Jindrich Helcl, Rico Sennrich, Barry Haddow, and Alexan-
dra Birch. Deep architectures for neural machine translation. CoRR, abs/1707.07631,
2017.

[42] Tao Ge, Furu Wei, and Ming Zhou. Reaching human-level performance in automatic
grammatical error correction: An empirical study. CoRR, abs/1807.01270, 2018.

[43] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.



REFERENCES 48

[44] Zheng Yuan, Ted Briscoe, and Mariano Felice. Candidate re-ranking for SMT-based
grammatical error correction. In Proceedings of the 11th Workshop on Innovative Use of
NLP for Building Educational Applications, pages 256–266, June 2016.

[45] Marek Rei, Mariano Felice, Zheng Yuan, and Ted Briscoe. Artificial error generation with
machine translation and syntactic patterns. arXiv preprint arXiv:1707.05236, 2017.



Appendix A

Risk Assessment

This project is entirely computer-based, so the risk was mainly due to computer screen use,
and the condition of working space such as the position of the screen, table, or chair. The risk
assessment evaluated at the beginning of this project reflected these issues well, and there was
no further risk that I encountered. If I were to start this project again, I would still assess risk as I
did.
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